Respuesta :
Answer:
Verified!
Step-by-step explanation:
Upper or lower triangular matrix does not make any difference in finding eigenvalues because equalizing determinant to zero will lead to the same result.
Let's apply it for 2x2 matix:
[tex]A = \left[\begin{array}{ccc}a&0\\b&c\end{array}\right]\\\\\lambda I - A = \left[\begin{array}{ccc}\lambda&0\\0&\lambda\end{array}\right]-\left[\begin{array}{ccc}a&0\\b&c\end{array}\right]\\\\det(\lambda I - A) = det\left[\begin{array}{ccc}\lambda-a&0\\-b&\lambda-c\end{array}\right]=(\lambda-a)(\lambda-c)=0[/tex]
So, eigenvalues are entries on the diagonal because zeros in upper side or lower side vanishes the remaining part and only we have [tex](\lambda-a)(\lambda-c)[/tex].
So, eigenvalues are [tex]\lambda_1=a,\:\lambda_2=c[/tex]
Let's apply it for 3x3 matrix:
[tex]A = \left[\begin{array}{ccc}a&0&0\\b&c&0\\d&e&f\end{array}\right]\\\\\lambda I - A = \left[\begin{array}{ccc}\lambda&0&0\\0&\lambda&0\\0&0&\lambda\end{array}\right]-\left[\begin{array}{ccc}a&0&0\\b&c&0\\d&e&f\end{array}\right]\\\\det(\lambda I - A) = det\left[\begin{array}{ccc}\lambda-a&0&0\\-b&\lambda-c&0\\-d&-e&\lambda-f\end{array}\right]=(\lambda-a)(\lambda-c)(\lambda-f)=0[/tex]
So as above, eigenvalues are entries on the diagonal because zeros in upper side or lower side vanishes the remaining part and only we have [tex](\lambda-a)(\lambda-c)(\lambda-f)[/tex].
So eigenvalues are [tex]\lambda_1=a,\:\lambda_2=c,\:\lambda_3=f[/tex]