In general, the eigenvalues of an upper triangular matrix are given by the entries on the diagonal. The same is true for a lower triangular matrix. Verify this for 2 × 2 and 3 × 3 matrices.

Respuesta :

Answer:

Verified!

Step-by-step explanation:

Upper or lower triangular matrix does not make any difference in finding eigenvalues because equalizing determinant to zero will lead to the same result.

Let's apply it for 2x2 matix:

[tex]A = \left[\begin{array}{ccc}a&0\\b&c\end{array}\right]\\\\\lambda I - A = \left[\begin{array}{ccc}\lambda&0\\0&\lambda\end{array}\right]-\left[\begin{array}{ccc}a&0\\b&c\end{array}\right]\\\\det(\lambda I - A) = det\left[\begin{array}{ccc}\lambda-a&0\\-b&\lambda-c\end{array}\right]=(\lambda-a)(\lambda-c)=0[/tex]

So, eigenvalues are entries on the diagonal because zeros in upper side or lower side vanishes the remaining part and only we have [tex](\lambda-a)(\lambda-c)[/tex].

So, eigenvalues are [tex]\lambda_1=a,\:\lambda_2=c[/tex]

Let's apply it for 3x3 matrix:

[tex]A = \left[\begin{array}{ccc}a&0&0\\b&c&0\\d&e&f\end{array}\right]\\\\\lambda I - A = \left[\begin{array}{ccc}\lambda&0&0\\0&\lambda&0\\0&0&\lambda\end{array}\right]-\left[\begin{array}{ccc}a&0&0\\b&c&0\\d&e&f\end{array}\right]\\\\det(\lambda I - A) = det\left[\begin{array}{ccc}\lambda-a&0&0\\-b&\lambda-c&0\\-d&-e&\lambda-f\end{array}\right]=(\lambda-a)(\lambda-c)(\lambda-f)=0[/tex]

So as above, eigenvalues are entries on the diagonal because zeros in upper side or lower side vanishes the remaining part and only we have [tex](\lambda-a)(\lambda-c)(\lambda-f)[/tex].

So eigenvalues are [tex]\lambda_1=a,\:\lambda_2=c,\:\lambda_3=f[/tex]