Respuesta :

Answer:

[tex]a + b = 9[/tex]

Step-by-step explanation:

We have a quadratic equation in z, given as:

[tex] {z}^{2} + az + b = 0[/tex]

with roots

[tex]z_1 = 2 + 3i \: and \: z_2 = 2 - 3i[/tex]

The sum of roots is given by:

[tex]z_1 + z_2 = - \frac{a}{1} [/tex]

This implies that

[tex]2 - 3i + 2 + 3i= - \frac{a}{1} [/tex]

[tex]4 = - a[/tex]

[tex]a = - 4[/tex]

Also product of roots is given by:

[tex]z_1z_2 = \frac{b}{1} [/tex]

This implies that:

[tex](2 + 3i)(2 - 3i) = b[/tex]

[tex]b = {2}^{2} + {3}^{2} [/tex]

[tex]b = 13[/tex]

Therefore

[tex]a + b = 13 - 4 = 9[/tex]