Respuesta :

Answer:

Step-by-step explanation:

Consider the integral

[tex]\int\limits^1_{-infty}  \frac{1}{x^p}  \, dx[/tex]

for various values of p

CaseI:p =1 Then integral is ln x and for infinity this value diverges so diverges

Case 2: p<1

The integrated value would be [tex]\frac{x^{-p+1} }{-p+1}[/tex]

Since P <1 numerator x will have positive exponent and when infinity is substituted this will diverge

Case 3: p >1

[tex]\frac{x^{-p+1} }{-p+1}[/tex] will have x with negative exponent. So when x = infinity this value becomes 0 thus making the integral to converge