Respuesta :

Answer:

The derivative of the function is:

[tex]g'(x) = \frac{1}{2.0794*(2x - 5)}[/tex]

Step-by-step explanation:

If we have a function in the following format:

[tex]g(x) = \log_{a}{f(x)}[/tex]

This function has the following derivative

[tex]g'(x) = \frac{f'(x)}{f(x)*\ln{a}}[/tex]

In this problem, we have that:

[tex]f(x) = \log_{8}{2x - 5}[/tex]

So [tex]f(x) = 2x - 5, f'(x) = 2, a = 8[/tex]

The derivative is

[tex]g'(x) = \frac{f'(x)}{f(x)*\ln{a}}[/tex]

[tex]g'(x) = \frac{1}{(2x-5)*\ln{8}}[/tex]

[tex]g'(x) = \frac{1}{2.0794*(2x - 5)}[/tex]

Otras preguntas