Respuesta :

Answer:

[tex]\frac{dy}{dx}=\frac{8lnx}{x}[/tex]

Step-by-step explanation:

We are given that a function  

[tex]y=(lnx^2)^2[/tex]

We have to find the derivative of the function  

Differentiate w.r.t x

[tex]\frac{dy}{dx}=2(lnx^2)\times \frac{1}{x^2}\times 2x[/tex]

By using formula

[tex]\frac{d(lnx)}{dx}=\frac{1}{x}[/tex]

[tex]\frac{dx^n}{dx}=nx^{n-1}[/tex]

[tex]\frac{dy}{dx}=\frac{4lnx^2}{x}=\frac{4(2)lnx}{x}[/tex]

by using [tex]lnx^y=ylnx[/tex]

Hence, the derivative of function

[tex]\frac{dy}{dx}==\frac{8lnx}{x}[/tex]

Answer: The required derivative is [tex]\dfrac{dy}{dx}=\\dfrac{4}{x\ln x^2}[/tex]

Step-by-step explanation:

Since we have given that

[tex]y=(\ln x^2)^2[/tex]

We need to derivative it w.r.t 'x'., using "Chain rule"

As we know that

[tex]\dfrac{d}{dx} \ln x=\dfrac{1}{x}\\\\and\\\\\dfrac{d}{dx}x^n=nx^{n-1}[/tex]

So, it becomes,

[tex]\dfrac{dy}{dx}=\dfrac{1}{\ln (x^2)^2}\times 2\ln(x^2)\times \dfrac{1}{x^2}\times 2x\\\\\dfrac{dy}{dx}=\dfrac{4}{x\ln x^2}[/tex]

Hence, the required derivative is [tex]\dfrac{dy}{dx}=\\dfrac{4}{x\ln x^2}[/tex]