Respuesta :

Answer:

[tex]\frac{dy}{dx}=\frac{x(1-2lnx)}{x^{4}}[/tex]

Step-by-step explanation:

To solve the question we refresh our knowledge of the quotient rule.

For a function f(x) express as a ratio of another functions u(x) and v(x) i.e

[tex]f(x)=\frac{u(x)}{v(x)}\\[/tex], the derivative is express as

[tex]\frac{df(x)}{dx}=\frac{v(x)\frac{du(x)}{dx}-u(x)\frac{dv(x)}{dx}}{v(x)^{2} }[/tex]

from [tex]y=lnx/x^{2}[/tex]

we assign u(x)=lnx and v(x)=x^2

and the derivatives

[tex]\frac{du(x)}{dx}=\frac{1}{x}\\\frac{dv(x)}{dx}=2x\\[/tex].

Note the expression used in determining the derivative of the logarithm function.it was obtain from the general expression of logarithm derivative i.e [tex]y=lnx\\\frac{dy}{dx}=\frac{1}{x}[/tex]

If we substitute values into the quotient expression we arrive at

[tex]\frac{dy}{dx}=\frac{(x^{2}*\frac{1}{x})-(2x*lnx)}{x^{4}}\\\frac{dy}{dx}=\frac{x-2xlnx}{x^{4}}\\\frac{dy}{dx}=\frac{x(1-2lnx)}{x^{4}}[/tex]