Respuesta :

Answer:

[tex]\frac{dy}{dx} = \frac{4(In x)^{3}}{x}[/tex]

Step-by-step explanation:

Solving [tex]y = (In)^{4}[/tex]

Using function of function (Chain Rule)

             [tex]\frac{dy}{dx} = \frac{dy}{du} * \frac{du}{dx} [/tex]    -----(1)

To simplify the function,

             Let u = In x

Differentiating u with respect to x

             [tex]\frac{du}{dx} = \frac{1}{x}[/tex]                -------- (2)

Substituting u = In x in the given function [tex]y = (In x)^{4}[/tex]

             [tex]y = (u)^{4}[/tex]

Differentiating y with respect to u

             [tex]\frac{dy}{du} = 4u^{3}[/tex]

Now that we have [tex]\frac{dy}{du}[/tex] and [tex]\frac{du}{dx}[/tex], we can solve for [tex]\frac{dy}{dx}[/tex]

             [tex]\frac{dy}{dx} = 4u^{3} * \frac{1}{x}[/tex]

Substituting u = In x into the equation,

             [tex]\frac{dy}{dx} = 4(In x)^{3} * \frac{1}{x}[/tex]

             [tex]\frac{dy}{dx} = \frac{4(In x)^{3}}{x}[/tex]