Respuesta :
Answer:
Diverges
Step-by-step explanation:
Here an improper integral is given.The limits are 1 to infinity
The function to be integrated is
[tex]\frac{4x+6}{x^2+3x}[/tex]
Let us decompose this into partial fractions
[tex]\frac{4x+6}{x^2+3x}[/tex]=[tex]\frac{A}{x}+\frac{B}{x+3}[/tex]
Solving we get
A=B=2
Hence integral would be = 2 ln x + 2 ln (x+3)
When we substitute infinity here, this becomes very large thus the integral diverges.
Answer:
The improper integral diverges.
[tex]\displaystyle \int\limits^{\infty}_1 {\frac{4x + 6}{x^2 + 3x}} \, dx = \infty[/tex]
General Formulas and Concepts:
Calculus
Limits
Limit Rule [Variable Direct Substitution]:
[tex]\displaystyle \lim_{x \to c} x = c[/tex]
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
[tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Property [Addition/Subtraction]:
\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]:
[tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Method: U-Substitution
Improper Integral:
[tex]\displaystyle \int\limits^{\infty}_a {f(x)} \, dx = \lim_{b \to \infty} \int\limits^b_a {f(x)} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify.
[tex]\displaystyle \int\limits^{\infty}_1 {\frac{4x + 6}{x^2 + 3x}} \, dx[/tex]
Step 2: Integrate Pt. 1
- [Integral] Rewrite [Improper Integral]:
[tex]\displaystyle \int\limits^{\infty}_1 {\frac{4x + 6}{x^2 + 3x}} \, dx = \lim_{b \to \infty} \int\limits^{b}_1 {\frac{4x + 6}{x^2 + 3x}} \, dx[/tex]
Step 3: Integrate Pt. 2
Identify variables for u-substitution.
- Set u:
[tex]\displaystyle u = x^2 + 3x[/tex] - [u] Differentiate [Derivative Properties and Rules]:
[tex]\displaystyle u = x^2 + 3x[/tex] - [Bounds] Swap:
[tex]\displaystyle \left \{ {{x = b \rightarrow u = b^2 + 3b} \atop {x = 1 \rightarrow u = 4}} \right.[/tex]
Step 4: Integrate Pt. 3
- [Integrand] Rewrite:
[tex]\displaystyle \int\limits^{\infty}_1 {\frac{4x + 6}{x^2 + 3x}} \, dx = \lim_{b \to \infty} \int\limits^{b}_1 {\frac{2(2x + 3)}{x^2 + 3x}} \, dx[/tex] - [Integral] Apply Integration Method [U-Substitution]:
[tex]\displaystyle \int\limits^{\infty}_1 {\frac{4x + 6}{x^2 + 3x}} \, dx = \lim_{b \to \infty} \int\limits^{b^2 + 3b}_4 {\frac{2}{u}} \, du[/tex] - [Integral] Rewrite [Integration Property - Multiplied Constant]:
[tex]\displaystyle \int\limits^{\infty}_1 {\frac{4x + 6}{x^2 + 3x}} \, dx = \lim_{b \to \infty} 2 \int\limits^{b^2 + 3b}_4 {\frac{1}{u}} \, du[/tex] - [Integral] Apply Logarithmic Integration:
[tex]\displaystyle \int\limits^{\infty}_1 {\frac{4x + 6}{x^2 + 3x}} \, dx = \lim_{b \to \infty} 2 \ln |u| \bigg| \limits^{b^2 + 3b}_4[/tex] - Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \int\limits^{\infty}_1 {\frac{4x + 6}{x^2 + 3x}} \, dx = \lim_{b \to \infty} 2 \ln \bigg( \frac{|b^2 + 3b|}{4} \bigg)[/tex] - [Limit] Evaluate [Limit Rule - Variable Direct Substitution]:
[tex]\displaystyle \int\limits^{\infty}_1 {\frac{4x + 6}{x^2 + 3x}} \, dx = 2 \ln \bigg( \frac{|\infty^2 + 3(\infty)|}{4} \bigg)[/tex] - Simplify:
[tex]\displaystyle \int\limits^{\infty}_1 {\frac{4x + 6}{x^2 + 3x}} \, dx = \infty[/tex]
∴ the improper integral tends to ∞ and is divergent.
---
Learn more about improper integrals: https://brainly.com/question/14413608
Learn more about calculus: https://brainly.com/question/23558817
---
Topic: AP Calculus BC (Calculus I + II)
Unit: Integration