Respuesta :

Answer:

INtegral converges to 1

Step-by-step explanation:

Given is an improper integral and limits are x=0 to infinity

f(x) = [tex]\frac{1}{(x+1)^2}[/tex]

is to be integrated

f(x) is defined for the values from 0 to infinity since only at -1 f becomes undefined.

We have

[tex]\int \frac{1}{(x+1)^2}dx=-\frac{1}{(x+1)[tex]

Substitute limits

When we substitute infinity this becomes 0

Hence integral value is = 0-(-1/1)=1

INtegral converges to 1

Space

Answer:

The improper integral converges.

[tex]\displaystyle \int\limits^{\infty}_0 {\frac{dx}{(x + 1)^2}} = 1[/tex]

General Formulas and Concepts:

Calculus

Limits

Limit Rule [Variable Direct Substitution]:                                                            [tex]\displaystyle \lim_{x \to c} x = c[/tex]

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                          [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Derivative Property [Addition/Subtraction]:                                                        [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                              [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:                                    [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

{f(x)} \, dx

Integration Property [Multiplied Constant]:                                                         [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Integration Property [Addition/Subtraction]:                                                       [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Integration Method: U-Substitution

Improper Integral:                                                                                                 [tex]\displaystyle \int\limits^{\infty}_a {f(x)} \, dx = \lim_{b \to \infty} \int\limits^b_a {f(x)} \, dx[/tex]

Step-by-step explanation:

Step 1: Define

Identify.

[tex]\displaystyle \int\limits^{\infty}_0 {\frac{dx}{(x + 1)^2}}[/tex]

Step 2: Integrate Pt. 1

  1. [Integral] Rewrite [Improper Integral]:                                                         [tex]\displaystyle \int\limits^{\infty}_0 {\frac{dx}{(x + 1)^2}} = \lim_{b \to \infty} \int\limits^{b}_0 {\frac{dx}{(x + 1)^2}}[/tex]

Step 3: Integrate Pt. 2

Identify variables for u-substitution.

  1. Set u:                                                                                                             [tex]\displaystyle u = x + 1[/tex]
  2. [u] Differentiate [Derivative Properties and Rules]:                                   [tex]\displaystyle du = dx[/tex]
  3. [Bounds] Swap:                                                                                            [tex]\displaystyle \left \{ {{x = b \rightarrow u = b + 1} \atop {x = 0 \rightarrow u = 1}} \right.[/tex]

Step 4: Integrate Pt. 3

  1. [Integral] Apply Integration Method [U-Substitution]:                                [tex]\displaystyle \int\limits^{\infty}_0 {\frac{dx}{(x + 1)^2}} = \lim_{b \to \infty} \int\limits^{b + 1}_1 {\frac{du}{u^2}}[/tex]
  2. [Integral] Apply Integration Rule [Reverse Power Rule]:                           [tex]\displaystyle \int\limits^{\infty}_0 {\frac{dx}{(x + 1)^2}} = \lim_{b \to \infty} \frac{-1}{u} \bigg| \limits^{b + 1}_1[/tex]
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:         [tex]\displaystyle \int\limits^{\infty}_0 {\frac{dx}{(x + 1)^2}} = \lim_{b \to \infty} \bigg( 1 - \frac{1}{b + 1} \bigg)[/tex]
  4. [Limit] Evaluate [Limit Rule - Variable Direct Substitution]:                       [tex]\displaystyle \int\limits^{\infty}_0 {\frac{dx}{(x + 1)^2}} = 1 - \frac{1}{\infty + 1}[/tex]
  5. Simplify:                                                                                                        [tex]\displaystyle \int\limits^{\infty}_0 {\frac{dx}{(x + 1)^2}} = 1[/tex]

∴ the improper integral is equal to 1 and is convergent.

---

Learn more about improper integrals: https://brainly.com/question/14412496

Learn more about calculus: https://brainly.com/question/20197752

---

Topic: AP Calculus BC (Calculus I + II)

Unit: Integration