Respuesta :
Answer:convergent
Step-by-step explanation:
Given
Improper Integral I is given as
[tex]I=\int_{-\infty}^{0}1000e^xdx[/tex]
[tex]I=1000=\int_{-\infty}^{0}e^xdx[/tex]
integration of [tex]e^x[/tex] is [tex]e^x[/tex]
[tex]I=1000\times \left [ e^x\right ]^{0}_{-\infty}[/tex]
[tex]I=1000\times I=\left [ e^0-e^{-\infty}\right ][/tex]
[tex]I=1000\times \left [ e^0-\frac{1}{e^{\infty}}\right ][/tex]
[tex]I=1000\times 1=1000[/tex]
so the integration converges to 1000 units
Answer:
The improper integral converges.
[tex]\displaystyle \int\limits^0_{- \infty} {1000e^x} \, dx = 1000[/tex]
General Formulas and Concepts:
Calculus
Limits
Limit Rule [Variable Direct Substitution]: [tex]\displaystyle \lim_{x \to c} x = c[/tex]
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Integration Method: U-Substitution
Improper Integrals: [tex]\displaystyle \int\limits^{\infty}_a {f(x)} \, dx = \lim_{b \to \infty} \int\limits^b_a {f(x)} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify.
[tex]\displaystyle \int\limits^0_{- \infty} {1000e^x} \, dx[/tex]
Step 2: Integrate
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int\limits^0_{- \infty} {1000e^x} \, dx = 1000 \int\limits^0_{- \infty} {e^x} \, dx[/tex]
- [Integral] Rewrite [Improper Integral]: [tex]\displaystyle \int\limits^0_{- \infty} {1000e^x} \, dx = \lim_{a \to -\infty} 1000 \int\limits^0_{a} {e^x} \, dx[/tex]
- [Integral] Apply Exponential Integration: [tex]\displaystyle \int\limits^0_{- \infty} {1000e^x} \, dx = \lim_{a \to -\infty} 1000 \big( e^x \big) \bigg| \limits^0_{a}[/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus]: [tex]\displaystyle \int\limits^0_{- \infty} {1000e^x} \, dx = \lim_{a \to -\infty} 1000 \big( 1 - e^a \big)[/tex]
- [Limit] Evaluate [Limit Rule - Variable Direct Substitution]: [tex]\displaystyle \int\limits^0_{- \infty} {1000e^x} \, dx = 1000 \big( 1 - e^{- \infty} \big)[/tex]
- Rewrite: [tex]\displaystyle \int\limits^0_{- \infty} {1000e^x} \, dx = 1000 \big( 1 - \frac{1}{e^{\infty}} \big)[/tex]
- Simplify: [tex]\displaystyle \int\limits^0_{- \infty} {1000e^x} \, dx = 1000[/tex]
∴ the improper integral is equal to 1000 and is convergent.
---
Learn more about improper integrals: https://brainly.com/question/14411888
Learn more about calculus: brainly.com/question/23558817
---
Topic: AP Calculus BC (Calculus I + II)
Unit: Integration