Respuesta :

Answer:

[tex]\mathrm{Range\:of\:}x^2+2x-8:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\ge \:-9\:\\ \:\mathrm{Interval\:Notation:}&\:[-9,\:\infty \:)\end{bmatrix}[/tex]

Step-by-step explanation:

As the function is

[tex]x^{2} +2x-8[/tex]

As we know that domain is the set of input values for which the function is defined.

Therefore,

[tex]\mathrm{Domain\:of\:}\:x^2+2x-8\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]

And range is defined as:

The set of the dependent variable for which the function is defined.

As

[tex]\mathrm{For\:a\:parabola}\:ax^2+bx+c\:\mathrm{with\:Vertex}\:\left(x_v,\:y_v\right)[/tex]

[tex]\mathrm{If}\:a<0\:\mathrm{the\:range\:is}\:f\left(x\right)\le \:y_v[/tex]

[tex]\mathrm{If}\:a>0\:\mathrm{the\:range\:is}\:f\left(x\right)\ge \:y_v[/tex]

[tex]a=1,\:\mathrm{Vertex}\:\left(x_v,\:y_v\right)=\left(-1,\:-9\right)[/tex]

[tex]f\left(x\right)\ge \:-9[/tex]

Therefore,

[tex]\mathrm{Range\:of\:}x^2+2x-8:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\ge \:-9\:\\ \:\mathrm{Interval\:Notation:}&\:[-9,\:\infty \:)\end{bmatrix}[/tex]

The graph is also attached below.

Keywords: graph, domain, range

Learn more about domain and range from brainly.com/question/13856645

#learnwithBrainly

Ver imagen SaniShahbaz