Compound Interest A deposite of $1000 is made in an account that earns interest at an annual rate of 5%.How long will it take for the balance to double When the interest is compounded (a) annually,(b) monthly,(c) daily,and (d) continously?

Respuesta :

Answer:

(a) 14.21

(b) 13.78

(c) 13.57

(d) 13.86

Step-by-step explanation:

Compound Interest, compounded n times per year,

                   [tex]A = P(1 + \frac{r}{n} )^{nt}[/tex]

Compound Interest, compounded continuously,

                   [tex]A = Pe^{rt}[/tex]

Where

A is the new amount/balance

P is the Principal (amount invested)

r is the rate in percentage

n is the number of times it is compounded.

Given:

Principal, P = $1000

rate, r = 5% = 0.05

For the balance to double, A = 2 × $1000

                A = $2000

(a) annually, n = 1

                   [tex]2000 = 1000(1 + \frac{0.05}{1} )^{1 * t}[/tex]

                   [tex]2 = (1 + 0.05)^{t}[/tex]

                   [tex]2 = (1.05)^{t}[/tex]

To solve for t, we take [tex]log_{10}[/tex] of both sides

                    [tex]log_{10}2 = log_{10}1.05^{t}[/tex]

                    [tex]log_{10}2 = t(log_{10}1.05)[/tex]

                    [tex]t = \frac{log_{10}2}{log_{10}1.05}[/tex]

                    [tex]t = \frac{0.3010}{0.0212}[/tex]

                    t = 14.21

(b) monthly, n = 12

                   [tex]2000 = 1000(1 + \frac{0.05}{12} )^{12 * t}[/tex]

                   [tex]2 = (1 + 0.0042)^{12t}[/tex]

                   [tex]2 = (1.0042)^{12t}[/tex]

To solve for t, we take [tex]log_{10}[/tex] of both sides

                    [tex]log_{10}2 = log_{10}1.0042^{12t}[/tex]

                    [tex]log_{10}2 = 12t(log_{10}1.0042)[/tex]

                    [tex]t = \frac{log_{10}2}{12 * log_{10}1.0042}[/tex]

                    [tex]t = \frac{0.3010}{0.0218}[/tex]

                    t = 13.78

(c) daily, n = 365

                   [tex]2000 = 1000(1 + \frac{0.05}{365} )^{365 * t}[/tex]

                   [tex]2 = (1 + 0.00014)^{365t}[/tex]

                   [tex]2 = (1.00014)^{365t}[/tex]

To solve for t, we take [tex]log_{10}[/tex] of both sides

                    [tex]log_{10}2 = log_{10}1.00014^{365t}[/tex]

                    [tex]log_{10}2 = 365t(log_{10}1.00014)[/tex]

                    [tex]t = \frac{log_{10}2}{365 * log_{10}1.00014}[/tex]

                    [tex]t = \frac{0.3010}{0.022}[/tex]  

                    t = 13.565

                    t = 13.57

(d) Continuously

                    [tex]2000 = 1000e^{0.05t}[/tex]

                    [tex]2 = e^{0.05t}[/tex]

To solve for t, we take [tex]log_{e}[/tex] of both sides

                    [tex]log_{e}2 = log_{e}e^{0.05t}[/tex]

But log_{e}e = 1

                    In2 = 0.05t

                    [tex]t =\frac{In2}{0.05}[/tex]

                    [tex]t =\frac{0.693}{0.05}[/tex]

                    t = 13.86