Compound interest In Exercise,$3000 is invested in an account at interest rate r,compounded continuously.Find the time required for the amount to (a) double and (b) triple.
r = 0.085

Respuesta :

Answer:

(a) 8.15

(b) 12.92

Step-by-step explanation:

Given: P = $3000, r = 0.085

                [tex]A = Pe^{rt}[/tex]

Where

A is the Amount

P is the Principal

r is the rate

t is the time

(a) For the amount to double, A = 2 × P

               A = 2 × $3000

               A = $6000

               [tex]6000 = 3000e^{0.085t}[/tex]

               [tex]\frac{6000}{3000} = e^{0.085t}[/tex]

               [tex]2 = e^{0.085t}[/tex]

Take [tex]log_{e}[/tex] of both sides

               [tex]log_{e}2 = log_{e}e^{0.085t}[/tex]

But [tex]log_{e}e = 1[/tex]

            ∴ [tex]ln2 = 0.085t[/tex]

               [tex]t = \frac{ln2}{0.085}[/tex]

               [tex]t = \frac{0.693}{0.085}[/tex]

               t = 8.15

(b) For the amount to double, A = 3 × P

               A = 3 × $3000

               A = $9000

               [tex]9000 = 3000e^{0.085t}[/tex]

               [tex]\frac{9000}{3000} = e^{0.085t}[/tex]

               [tex]3 = e^{0.085t}[/tex]

Take [tex]log_{e}[/tex] of both sides

               [tex]log_{e}3 = log_{e}e^{0.085t}[/tex]

But [tex]log_{e}e = 1[/tex]

            ∴ [tex]ln3 = 0.085t[/tex]

               [tex]t = \frac{ln3}{0.085}[/tex]

               [tex]t = \frac{1.0986}{0.085}[/tex]

               t = 12.92