Respuesta :
Answer:
Since the [tex]\lim_{x\to -\infty} \frac{1}{(x-2)^2}=0[/tex] then we have this:
[tex]\int_{-\infty}^{-1} (x-2)^{-3} dx =-\frac{1}{18}[/tex]
And we see that our integral on this case converged to -1/18.
Step-by-step explanation:
For this case we need to determine if the following integral converges or not:
[tex] \int_{-\infty}^{-1} (x-2)^{-3} dx[/tex]
We can rewrite the integral like this:
[tex] \int_{-\infty}^{-1} \frac{1}{(x-2)^3} dx[/tex]
Then we can use the substitution [tex] u = x-2[/tex] and then [tex] du = dx[/tex] and we have this:
[tex] \int_{-\infty}^{-3} \frac{1}{u^3} du=\int_{-\infty}^{-3} u^{-3} du [/tex]
If we solve the integral we got:
[tex] =\frac{u^{-3+1}}{-3+1} =-\frac{u^{-2}}{2}=-\frac{1}{2}\frac{1}{u^2}[/tex]
And then the integral would be equal to:
[tex]\int_{-\infty}^{-1} (x-2)^{-3} dx = -\frac{1}{2(x-2)^2}\Big|_{-\infty}^{-1}[/tex]
And if we replace and using the fundamental theorem of calculus we got:
[tex] = -\frac{1}{2} [\frac{1}{(-1-2)^2} -\lim_{x\to -\infty} \frac{1}{(x-2)^2}][/tex]
Since the [tex]\lim_{x\to -\infty} \frac{1}{(x-2)^2}=0[/tex] then we have this:
[tex]\int_{-\infty}^{-1} (x-2)^{-3} dx =-\frac{1}{18}[/tex]
And we see that our integral on this case converged to -1/18.
Answer:
The improper integral converges.
[tex]\displaystyle \int\limits^{-1}_{- \infty} {(x - 2)^{-3}} \, dx = \frac{-1}{18}[/tex]
General Formulas and Concepts:
Calculus
Limit
Limit Rule [Variable Direct Substitution]: [tex]\displaystyle \lim_{x \to c} x = c[/tex]
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Method: U-Substitution
Improper Integral: [tex]\displaystyle \int\limits^{\infty}_a {f(x)} \, dx = \lim_{b \to \infty} \int\limits^b_a {f(x)} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify,
[tex]\displaystyle \int\limits^{-1}_{- \infty} {(x - 2)^{-3}} \, dx[/tex]
Step 2: Integrate Pt. 1
- [Integral] Rewrite [Improper Integral]: [tex]\displaystyle \int\limits^{-1}_{- \infty} {(x - 2)^{-3}} \, dx = \lim_{a \to - \infty} \int\limits^{-1}_{a} {(x - 2)^{-3}} \, dx[/tex]
Step 3: Integrate Pt. 2
Identify variables for u-substitution.
- Set u: [tex]\displaystyle u = x - 2[/tex]
- [u] Differentiate [Derivative Properties and Rules]: [tex]\displaystyle du = dx[/tex]
- [Bounds] Swap: [tex]\displaystyle \left \{ {{x = -1 \rightarrow u = -3} \atop {x = a \rightarrow u = a - 2}} \right.[/tex]
Step 4: Integrate Pt. 3
- [Integral] Apply Integration Method [U-Substitution]: [tex]\displaystyle \int\limits^{-1}_{- \infty} {(x - 2)^{-3}} \, dx = \lim_{a \to - \infty} \int\limits^{-3}_{a - 2} {u^{-3}} \, du[/tex]
- [Integral] Apply Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int\limits^{-1}_{- \infty} {(x - 2)^{-3}} \, dx = \lim_{a \to - \infty} \frac{-1}{2u^2} \bigg| \limits^{-3}_{a - 2}[/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^{-1}_{- \infty} {(x - 2)^{-3}} \, dx = \lim_{a \to - \infty} \bigg[ \frac{1}{2(a - 2)^2} - \frac{1}{18} \bigg][/tex]
- [Limit] Evaluate [Limit Rule - Variable Direct Substitution]: [tex]\displaystyle \int\limits^{-1}_{- \infty} {(x - 2)^{-3}} \, dx = \frac{1}{2(\infty - 2)^2} - \frac{1}{18}[/tex]
- Simplify: [tex]\displaystyle \int\limits^{-1}_{- \infty} {(x - 2)^{-3}} \, dx = - \frac{1}{18}[/tex]
∴ the improper integral equals [tex]\displaystyle \bold{\frac{-1}{18}}[/tex] and is convergent.
---
Learn more about improper integrals: https://brainly.com/question/14413082
Learn more about calculus: https://brainly.com/question/23558817
---
Topic: AP Calculus BC (Calculus I + II)
Unit: Integration