Respuesta :

Answer:

[tex] \int_{1}^{\infty} \frac{1}{x} dx = \infty -0 [/tex]

And with that we see that our integral diverges.

Step-by-step explanation:

For this case we assume the following integral:

[tex] \int_{1}^{\infty} \frac{1}{x} dx[/tex]

Since 1.000 = 1 are equivalent. We can solve the integral and since we know that [tex] \int \frac{1}{x} dx = ln|x| +c [/tex] we got this:

[tex] \int_{1}^{\infty} \frac{1}{x} dx = ln |x| \Big|_1^{\infty} [/tex]

And when we evaluate the limits using the fundamental theorem of calculus we got:

[tex] \int_{1}^{\infty} \frac{1}{x} dx = \lim_{x\to\infty} ln|x| - ln |1| [/tex]

By properties we know that [tex] ln |1|=0[/tex]. But the [tex]\lim_{x\to\infty} ln|x|[/tex] is not defined since the natural log is a continuous increasing function so then:

[tex] \lim_{x\to\infty} ln|x| = \infty[/tex]

And if we repplace this into our integral we got:

[tex] \int_{1}^{\infty} \frac{1}{x} dx = \infty -0 [/tex]

And with that we see that our integral diverges.

Space

Answer:

The improper integral diverges.

[tex]\displaystyle \int\limits^{\infty}_1 {\frac{1}{x}} \, dx = \infty[/tex]

General Formulas and Concepts:
Calculus

Limit

Limit Rule [Variable Direct Substitution]:                                                         [tex]\displaystyle \lim_{x \to c} x = c[/tex]

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                           [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:                                 [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Improper Integral:                                                                                             [tex]\displaystyle \int\limits^{\infty}_a {f(x)} \, dx = \lim_{b \to \infty} \int\limits^b_a {f(x)} \, dx[/tex]

Step-by-step explanation:

Step 1: Define

Identify.

[tex]\displaystyle \int\limits^{\infty}_1 {\frac{1}{x}} \, dx[/tex]

Step 2: Integrate

  1. [Integral] Rewrite [Improper Integral]:                                                         [tex]\displaystyle \int\limits^{\infty}_1 {\frac{1}{x}} \, dx = \lim_{b \to \infty} \int\limits^{b}_1 {\frac{1}{x}} \, dx[/tex]
  2. [Integral] Apply Logarithmic Integration:                                                    [tex]\displaystyle \int\limits^{\infty}_1 {\frac{1}{x}} \, dx = \lim_{b \to \infty} \ln |x| \bigg| \limits^{b}_1[/tex]
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:          [tex]\displaystyle \int\limits^{\infty}_1 {\frac{1}{x}} \, dx = \lim_{b \to \infty} \ln |b|[/tex]
  4. [Limit] Evaluate [Limit Rule - Variable Direct Substitution]:                       [tex]\displaystyle \int\limits^{\infty}_1 {\frac{1}{x}} \, dx = \ln |\infty|[/tex]
  5. Simplify:                                                                                                        [tex]\displaystyle \int\limits^{\infty}_1 {\frac{1}{x}} \, dx = \infty[/tex]

∴ the improper integral tends to ∞ and is divergent.

---

Learn more about improper integrals: https://brainly.com/question/14412498

Learn more about calculus: https://brainly.com/question/23558817

---

Topic: AP Calculus BC (Calculus I + II)

Unit: Integration