Respuesta :
Answer:Convergent
Step-by-step explanation:
Given
Improper Integral I is given as
[tex]I=\int^{-4}_{-\infty}\frac{3}{x^4}dx[/tex]
integration of [tex]\frac{3}{x^4}[/tex] is -[tex]\frac{1}{x^3}[/tex]
[tex]I=-\left [ \frac{1}{x^3}\right ]^{-4}_{-\infty}[/tex]
[tex]I=-\left [ \frac{1}{(-4)^3}-\frac{1}{(-\infty)^3}\right ][/tex]
[tex]I=-\left [ -\frac{1}{4^3}\right ][/tex]
[tex]I=\frac{1}{4^3}[/tex]
Integral is convergent at [tex]I=\frac{1}{64}[/tex]
Answer:
The improper integral converges.
[tex]\displaystyle \int\limits^{-4}_{- \infty} {\frac{3}{x^4}} \, dx = \frac{1}{64}[/tex]
General Formulas and Concepts:
Calculus
Limit
Limit Rule [Variable Direct Substitution]: [tex]\displaystyle \lim_{x \to c} x = c[/tex]
Integration
- Integrals
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Improper Integral: [tex]\displaystyle \int\limits^{\infty}_a {f(x)} \, dx = \lim_{b \to \infty} \int\limits^b_a {f(x)} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify.
[tex]\displaystyle \int\limits^{-4}_{- \infty} {\frac{3}{x^4}} \, dx[/tex]
Step 2: Integrate
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int\limits^{-4}_{- \infty} {\frac{3}{x^4}} \, dx = 3 \int\limits^{-4}_{- \infty} {\frac{1}{x^4}} \, dx[/tex]
- [Integral] Rewrite [Improper Integral]: [tex]\displaystyle \int\limits^{-4}_{- \infty} {\frac{3}{x^4}} \, dx = \lim_{a \to - \infty} 3 \int\limits^{-4}_{a} {\frac{1}{x^4}} \, dx[/tex]
- [Integral] Apply Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int\limits^{-4}_{- \infty} {\frac{3}{x^4}} \, dx = \lim_{a \to - \infty} 3 \bigg( \frac{-1}{3x^3} \bigg) \bigg| \limits^{-4}_{a}[/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^{-4}_{- \infty} {\frac{3}{x^4}} \, dx = \lim_{a \to - \infty} 3 \bigg( \frac{1}{3a^3} + \frac{1}{192} \bigg)[/tex]
- [Limit] Evaluate [Limit Rule - Variable Direct Substitution]: [tex]\displaystyle \int\limits^{-4}_{- \infty} {\frac{3}{x^4}} \, dx = 3 \bigg( \frac{1}{3(-\infty)^3} + \frac{1}{192} \bigg)[/tex]
- Simplify: [tex]\displaystyle \int\limits^{-4}_{- \infty} {\frac{3}{x^4}} \, dx = \frac{1}{64}[/tex]
∴ the improper integral equals [tex]\displaystyle \bold{\frac{1}{64}}[/tex] and is convergent.
---
Learn more about improper integrals: https://brainly.com/question/14412306
Learn more about calculus: https://brainly.com/question/23558817
---
Topic: AP Calculus BC (Calculus I + II)
Unit: Integration