Expanding logarithmic Expression In Exercise,Use the properties of logarithms to rewrite the expression as a sum,difference,or multipal of logarithms.See example 3.
In xy/z

Respuesta :

Answer:

[tex]\ln({x)}+\ln({y)}-\ln{(z)}[/tex]

Step-by-step explanation:

we'll recall our logarithmic properties as we are solving the question:

[tex]\ln{(\dfrac{xy}{z})}[/tex]

  • [tex]\ln{\dfrac{a}{b}} = \ln{(a)}-\ln{(b)}[/tex]

[tex]\ln({xy)}-\ln{(z)}[/tex]

  • [tex]\ln{(ab)} = \ln{(a)}+\ln{(b)}[/tex]

[tex]\ln({x)}+\ln({y)}-\ln{(z)}[/tex]

and this is our changed logarithmic expression!