Respuesta :

Answer:

The value of x for given log equation is 17. 5

Step-by-step explanation:

Given as :

The log function is

2 log 4 x - log 49 = 2

Or, 2 log 4 x - log (7 × 7) = 2

Or, 2 log 4 x - log 7² = 2

from Log property

[tex]Loga^{b}[/tex] = b Log a

So, 2 log 4 x - 2 log 7 = 2

Taking 2 from Left hand side of equation

Or, 2 × (log 4 x - log 7) = 2

Or, (log 4 x - log 7) = [tex]\dfrac{2}{2}[/tex]

Or, (log 4 x - log 7) = 1

Again from Log property

Log m - Log n = Log [tex]\dfrac{m}{n}[/tex]

So, (log 4 x - log 7) = 1

Or,  Log [tex]\dfrac{4 x}{7}[/tex] = 1

Now, Taking anti Log , we get

So, [tex]\dfrac{4 x}{7}[/tex] = antilog 1

i.e [tex]\dfrac{4 x}{7}[/tex] = [tex]10^{1}[/tex]

Or, 4 × x = 10 × 7

∴  x = [tex]\dfrac{70}{4}[/tex]

Or, x = 17.5

So, The value of x = 17.5

Hence, The value of x for given log equation is 17. 5  Answer

Answer:

The answer is c on edge

Step-by-step explanation:

I just got it right