Respuesta :

Answer:

[tex]x=1[/tex]

Step-by-step explanation:

Given:

Parallelogram P is dilated to form parallelogram P'.

The side of P which is = 10 units corresponds 20 units in P'.

The side of P which is given as =(x+3)  units corresponds 8 units in P'.

To find the value of [tex]x[/tex].

Solution:

The scalar factor of dilation from P to P' can be given as the ratio of the corresponding sides of the parallelograms.

The scalar factor :

⇒ [tex]\frac{\textrm{Side on parallelogram P'}}{\textrm{Side on parallelogram P}}[/tex]

⇒ [tex]\frac{20}{10}[/tex]

⇒ 2

This means the sides of the parallelogram P' is twice the sides of the parallelogram P.

The side of P which is given as =(x+3)  units corresponds 8 units in P'.

Using the scalar factor the equation to solve for [tex]x[/tex] can be given as:

⇒ [tex]2(x+3)=8[/tex]

Solving for [tex]x[/tex].

Using distribution:

⇒ [tex]2x+6=8[/tex]

Subtracting both sides by 6.

⇒ [tex]2x+6-6=8-6[/tex]

⇒ [tex]2x=2[/tex]

Dividing both sides by 2.

⇒ [tex]\frac{2x}{2}=\frac{2}{2}[/tex]

∴ [tex]x=1[/tex]  (Answer)

Answer:

X=1

Step-by-step explanation:

Half of 20 is 10 so half of 8 is 4. Therefore, X(1)+3=4