Answer:
[tex]\dfrac{dy}{dx} = 5e^x[/tex]
Step-by-step explanation:
We are given the following in the question:
[tex]y = 5e^x + 2[/tex]
We have to find the derivative of the given function.
Formula:
[tex]\dfrac{d(e^x)}{dx} = e^x[/tex]
Derivative of a constant is zero.
Derivation takes place as:
[tex]\dfrac{dy}{dx} = \dfrac{d(5e^x + 2)}{dx}\\\\=5\dfrac{d(e^x)}{dx} + \dfrac{d(2)}{dx}\\\\= 5e^x[/tex]
[tex]\dfrac{dy}{dx} = 5e^x[/tex]