Answer:
[tex]\dfrac{d(f(x))}{dx} = \dfrac{-6}{7}x^{-3}[/tex]
Step-by-step explanation:
We are given the following in the question:
[tex]f(x) = \dfrac{3}{7x^2}[/tex]
We have to find derivative of the given function
Formula:
[tex]\dfrac{d(x^n)}{dx} = nx^{n-1}[/tex]
Derivation the given function we get:
[tex]\dfrac{d(f(x))}{dx} = \dfrac{d}{dx}\bigg(\dfrac{3}{7x^2}\bigg)\\\\=\dfrac{d}{dx}\bigg(\dfrac{3x^{-2}}{7}\bigg)\\\\=\dfrac{3}{7}(-2)(x^{-2-1})\\\\=\dfrac{-6}{7}x^{-3}[/tex]
[tex]\dfrac{d(f(x))}{dx} = \dfrac{-6}{7}x^{-3}[/tex]