Respuesta :

Answer:

[tex]f'(x)=-5ae^{ax}=a f(x)[/tex], where a be a constant.

Step-by-step explanation:

Note: The given functions is a constant function because variable term is missing.

Consider the given function is

[tex]f(x)=-5e^{ax}[/tex]

where a be a constant.

We need to find the derivative of the function.

Differentiate with respect to x.

[tex]f'(x)=\dfrac{d}{dx}(-5e^{ax})[/tex]

[tex]f'(x)=-5\dfrac{d}{dx}(e^{ax})[/tex]

[tex]f'(x)=-5e^{ax}\dfrac{d}{dx}(ax)[/tex]            [tex][\because \dfrac{d}{dx}(e^x)=e^x][/tex]

[tex]f'(x)=-5ae^{ax}[/tex]

[tex]f'(x)=a(-5e^{ax})[/tex]

[tex]f'(x)=a f(x)[/tex]

Therefore, the derivative of the function is [tex]f'(x)=-5ae^{ax}=a f(x)[/tex].