Demand the demand function for a product is modeled by
p = 5000(1-4/4+e^-0.002x).
Find the price P (in dollars) of the product when the quantity demanded is (a) x = 100 units and (b) x = 500units.(c) what is the limit of the price as x increase without bound?

Respuesta :

Answer:

Step-by-step explanation:

Given

Production is given by

[tex]P=5000\left [ 1-\frac{4}{4+e^{-0.002x}}\right ][/tex]

(a)when [tex]x=100[/tex]

[tex]P=5000\left [ 1-\frac{4}{4+e^{-0.002\times 100}}\right ][/tex]

[tex]P=5000\left [ 1-\frac{4}{4+e^{-0.2}}\right ][/tex]

[tex]P=849.53\ units[/tex]

(b)When [tex]x=500\ units[/tex]

[tex]P=5000\left [ 1-\frac{4}{4+e^{-0.002\times 500}}\right ][/tex]

[tex]P=5000\left [ 1-\frac{4}{4+e^{-1}}\right ][/tex]

[tex]P=413[/tex]

(c)When there is no limit in x i.e. x tends to [tex]\infty[/tex]

[tex]P=5000\left [ 1-\frac{4}{4+e^{-\infty }}\right ][/tex]

[tex]P=5000(1-1)=0[/tex]

as x increases value of P is decreasing