Answer:
[tex]\frac{4\pi}{5}[/tex]
Step-by-step explanation:
We will use the following property of integral to calculate the volume of the solid of revolution by rotating about the x-axis:
[tex]V=\pi\int\limits^2_{-2} (\frac{1}{4}x^2)^2\:dx=\pi\int\limits^2_{-2} \frac{1}{16}x^4\:dx=\pi\frac{x^5}{80} |^2_{-2}=\frac{4\pi}{5}[/tex]