Respuesta :

Answer:

See the graph and explanation below.

Step-by-step explanation:

For this case we have the following function:

[tex] f(x) = e^{-\frac{x}{3}}[/tex]

We can calculate some points in order to see the tendency of the graph, we can select a set of points for example [tex] x =-2,-1.5,-1,0,1,1,5,2[/tex] and we can calculate the values for f(x) like this

x=-2

[tex] f(x=-2) =e^{-\frac{-2}{3}}= e^{\frac{2}{3}}=1.948[/tex]

x=-1.5

[tex] f(x=-1.5) =e^{-\frac{-1.5}{3}}= e^{0.5}=1.649[/tex]

x=-1

[tex] f(x=-1) =e^{-\frac{-1}{3}}= e^{\frac{1}{3}}=1.396[/tex]

x=0

[tex] f(x=0) =e^{-\frac{0}{3}}= e^{0}=1[/tex]

This point correspond to the y intercept.

x=1

[tex] f(x=1) =e^{-\frac{1}{3}}=0.717[/tex]

x=2

[tex] f(x=2) =e^{-\frac{2}{3}}=0.513[/tex]

We don't have x intercepts for this case since the function never crosses the x axis.

And then we can see the plot on the figure attached.

Ver imagen dfbustos