Respuesta :

Answer:

First Option is correct.

(x+2)(x+3)(x-4)

Step-by-step explanation:

Given:

The given factor is.

[tex]f(x)=x^{3}+x^{2}-14x-24[/tex]

We need to find the factors of given factor.

Solution:

[tex]f(x)=x^{3}+x^{2}-14x-24[/tex]

Substitute (-4x-10x) in the place of -14x

[tex]f(x)=x^{3}+x^{2}-4x-10x-24[/tex]

Rearrange the equation:

[tex]f(x)=(x^{3}-4x)+(x^{2}-10x-24)[/tex]

Now we factorised the above equation.

The factors of [tex]x^{2} -10x-24=(x+2)(x-12)[/tex]

Now we substitute (x+2)(x-12) in the place of [tex]x^{2} -10x-24[/tex]

And in the place of [tex]x^{3}-4x=x(x^{2}-4)[/tex]

[tex]f(x)=x(x^{2}-4)+(x+2)(x-12)[/tex]

Simplify [tex]x^{2} -4=x^{2} -(2)^{2} = (x+2)(x-2)[/tex]

[tex]f(x)=x[(x+2)(x-2)]+(x+2)(x-12)[/tex]

Common factor for above function (x+2)

[tex]f(x)=(x+2)[x(x-2)+(x-12)][/tex]

Simplify.

[tex]f(x)=(x+2)[x^{2}-2x+x-12][/tex]

[tex]f(x)=(x+2)(x^{2}-x-12)[/tex]

The factor of [tex]x^{2}-x-12=x^{2}-4x+3x-12=x(x-4)+3(x-4)=(x-4)(x+3)[/tex]

So the factors of the function.

[tex]f(x)=(x+2)(x-4)(x+3)[/tex]

Therefore, the factors of the given function are (x+2)(x-4)(x+3)