Find the volume of the solid of revolution formed by rotating about the x--axis the region bounded by the given curves.
f(x)=2/√x+2, y=0, x=-1, x=2.

Respuesta :

Answer:

[tex]4\pi\ln4[/tex]

Step-by-step explanation:

We are given: [tex]f(x)=\frac{2}{\sqrt{x+2}}[/tex]

The volume will be calculated with integral.

[tex]V = \pi\int\limits^2_{-1}(f(x))^2dx=\pi\int\limits^2_{-1}\frac{4}{x+2}dx=4\pi\ln(x+2)|^2_{-1}=4\pi\ln4[/tex]