Answer:
x^2 + y^2 + z^2 -2x - 4y - 6y = 0
Step-by-step explanation:
The equation of a sphere with centre (h, j, k) and radius r is given as
(x - h)^2 + (y - j)^2 + (z - k)^2 = r^2
r = [tex]\sqrt{(0 - 1)^2 + (0 - 2)^2 + (0 - 3)^2}[/tex]
r = sqrt(14)
(x - 1)^2 + (y - 2)^2 + (z - 3)^2 = 14
x^2 - 2x + 1 + y^2 -4y - 4 + z^2 - 6z + 9 = 14
x^2 + y^2 + z^2 -2x - 4y - 6y + 14 = 14
x^2 + y^2 + z^2 -2x - 4y - 6y = 14 -14
x^2 + y^2 + z^2 -2x - 4y - 6y = 0