Demand The demand function for a product is given by
p = 8000(1 - 5/5 + e^-0.002x)
where p is the price per unit (in dollars) and x is the number of units sold. Find the numbers of units sold for prices of (a) p = $200 and (b) p = $800.

Respuesta :

Answer:

[tex] x= -\frac{ln [\frac{5P}{8000-P}]}{0.002}[/tex]

a) [tex] x= -\frac{ln [\frac{5*200}{8000-200}]}{0.002} =1027.062 \approx 1027[/tex]

b) [tex] x= -\frac{ln [\frac{5*800}{8000-800}]}{0.002} =293.893 \approx 294[/tex]

Step-by-step explanation:

For this case we have the following function:

[tex] P= 8000 (1- \frac{5}{5 +e^{-0.002 x}})[/tex]

We can solve for x like this. First we can reorder the expression like this:

[tex] \frac{P}{8000} = 1- \frac{5}{5+e^{-0.002x}}[/tex]

[tex] \frac{5}{5+e^{-0.002x}} = 1 -\frac{P}{8000} = \frac{8000-P}{8000}[/tex]

[tex] \frac{40000}{8000-P} = 5 + e^{-0.002x}[/tex]

Now we can apply natura log on both sids and we got:

[tex] ln[\frac{40000}{8000-P} -5] = ln e^{-0.002x}[/tex]

[tex] ln [\frac{5P}{8000-P}] = -0.002x [/tex]

And if we solve for x we got:

[tex] x= -\frac{ln [\frac{5P}{8000-P}]}{0.002}[/tex]

Part a

For this case we can replace P = 200 and see what we got for x like this:

[tex] x= -\frac{ln [\frac{5*200}{8000-200}]}{0.002} =1027.062 \approx 1027[/tex]

Part b

For this case we can replace P = 800 and see what we got for x like this:

[tex] x= -\frac{ln [\frac{5*800}{8000-800}]}{0.002} =293.893 \approx 294[/tex]