Respuesta :
Answer:
[tex]\displaystyle \int {\sqrt{x^2 + 15}} \, dx = \frac{15 \ln \big| \sqrt{x^2 + 15} + x \big| + x\sqrt{x^2 + 15}}{2} + C[/tex]
General Formulas and Concepts:
Pre-Calculus
Trigonometric Identities
[Right Triangles Only] Pythagorean Theorem: a² + b² = c²
- a is a leg
- b is another leg
- c is the hypotenuse
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
U-Substitution
- Trigonometric Substitution
Reduction Formula: [tex]\displaystyle \int {\sec^n (u)} \, du = \frac{n - 2}{n - 1} \int {\sec^{n - 2} (u)} \, du + \frac{\sec^{n - 2} (u) \tan (u)}{n - 1}[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int {\sqrt{x^2 + 15}} \, dx[/tex]
Step 2: Integrate Pt. 1
Identify variables for trigonometric substitution.
- Set x: [tex]\displaystyle x = \sqrt{15} \tan \theta[/tex]
- [x] Differentiate [Trigonometric Differentiation, Derivative Property]: [tex]\displaystyle dx = \sqrt{15} \sec^2 (\theta) \ d\theta[/tex]
- [x] Rewrite: [tex]\displaystyle \theta = \arctan \bigg( \frac{x}{\sqrt{15}} \bigg)[/tex]
Step 3: Integrate Pt. 2
- [Integral] Trigonometric Substitution: [tex]\displaystyle \int {\sqrt{x^2 + 15}} \, dx = \int {\sqrt{15} \sec^2 (\theta) \sqrt{(\sqrt{15} \tan \theta)^2 + 15}} \, d\theta[/tex]
- [Integrand] Simplify: [tex]\displaystyle \int {\sqrt{x^2 + 15}} \, dx = \int {\sqrt{15} \sec^2 (\theta) \sqrt{15 \tan^2 (\theta) + 15}} \, d\theta[/tex]
- [Integrand] Factor: [tex]\displaystyle \int {\sqrt{x^2 + 15}} \, dx = \int {\sqrt{15} \sec^2 (\theta) \sqrt{15 (\tan^2 (\theta) + 1)}} \, d\theta[/tex]
- [Integrand] Rewrite [Trigonometric Identities]: [tex]\displaystyle \int {\sqrt{x^2 + 15}} \, dx = \int {\sqrt{15} \sec^2 (\theta) \sqrt{15 \sec^2 (\theta)}} \, d\theta[/tex]
- [Integral] Simplify: [tex]\displaystyle \int {\sqrt{x^2 + 15}} \, dx = \int {15 \sec^3 \theta} \, d\theta[/tex]
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {\sqrt{x^2 + 15}} \, dx = 15 \int {\sec^3 \theta} \, d\theta[/tex]
- [Integral] Reduction Formula: [tex]\displaystyle \int {\sqrt{x^2 + 15}} \, dx = 15 \bigg( \frac{1}{2} \int {\sec (\theta)} \, d\theta + \frac{\sec (\theta) \tan (\theta)}{2} \bigg)[/tex]
- [Integral] Trigonometric Integration: [tex]\displaystyle \int {\sqrt{x^2 + 15}} \, dx = 15 \bigg( \frac{\ln \big| \tan (\theta) + \sec (\theta) \big|}{2} + \frac{\sec (\theta) \tan (\theta)}{2} \bigg)[/tex]
- Simplify: [tex]\displaystyle \int {\sqrt{x^2 + 15}} \, dx = 15 \bigg( \frac{\ln \big| \tan (\theta) + \sec (\theta) \big| + \sec (\theta) \tan (\theta)}{2} \bigg)[/tex]
- [θ] Back-Substitute: [tex]\displaystyle \int {\sqrt{x^2 + 15}} \, dx = 15 \bigg( \frac{\ln \bigg| \tan \bigg( \arctan \big( \frac{x}{\sqrt{15}} \big) \bigg) + \sec \bigg( \arctan \big( \frac{x}{\sqrt{15}} \big) \bigg) \bigg| + \sec (\theta) \tan (\theta)}{2} \bigg)[/tex]
- Simplify: [tex]\displaystyle \int {\sqrt{x^2 + 15}} \, dx = 15 \bigg( \frac{\ln \bigg| \sqrt{\frac{x^2}{15} + 1} +\frac{x}{\sqrt{15}} \bigg| + \sec (\theta) \tan (\theta)}{2} \bigg)[/tex]
- [θ] Back-Substitute: [tex]\displaystyle \int {\sqrt{x^2 + 15}} \, dx = 15 \bigg( \frac{\ln \bigg| \sqrt{\frac{x^2}{15} + 1} +\frac{x}{\sqrt{15}} \bigg| + \sec \bigg( \arctan \big( \frac{x}{\sqrt{15}} \big) \bigg) \tan \bigg( \arctan \big( \frac{x}{\sqrt{15}} \big) \bigg)}{2} \bigg)[/tex]
- Simplify: [tex]\displaystyle \int {\sqrt{x^2 + 15}} \, dx = 15 \bigg( \frac{\ln \bigg| \sqrt{\frac{x^2}{15} + 1} +\frac{x}{\sqrt{15}} \bigg| + x\sqrt{15} \sqrt{\frac{x^2}{15} + 1}}{2} \bigg) + C[/tex]
- Simplify: [tex]\displaystyle \int {\sqrt{x^2 + 15}} \, dx = \frac{15 \ln \big| \sqrt{x^2 + 15} + x \big| + x\sqrt{x^2 + 15}}{2} + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Learn more on how to prove the reduction formula used: https://brainly.com/question/20197752
