Finding an Equation of a Tangent Line In Exercise, find an equation of the tangent line to the graph of the function at the given point.
y = x^2 e^-x, (1,1/e)

Respuesta :

Answer:

Equation of tangent will be [tex]y=\frac{x}{e}[/tex]

Step-by-step explanation:

We have given the function [tex]y=x^2e^{-x}[/tex]

We have to find the equation of tangent at the point [tex](1,\frac{1}{e})[/tex]

Equation of tangent is equal to [tex]\frac{dy}{dx}[/tex]

So [tex]\frac{dy}{dx}=x^2\frac{d}{dx}e^{-x}+e^{-x}\frac{d}{dx}2x=-x^2e^{-x}+2e^{-x}[/tex]

Now we have given point [tex](1,\frac{1}{e})[/tex]

So putting these points in the equation of tangent

[tex]\frac{dy}{dx}=-1^2e^{-1}+2e^{-1}[/tex]

[tex]\frac{dy}{dx}=\frac{1}{e}[/tex]

Now equation of tangent passing through [tex](1,\frac{1}{e})[/tex]

[tex]y-\frac{1}{e}=\frac{1}{e}(x-1)[/tex]

[tex]y=\frac{x}{e}-\frac{1}{e}+\frac{1}{e}=\frac{x}{e}[/tex]