Respuesta :

Answer:

[tex]y' = \frac{1 - 2x}{e^{4x}}[/tex]

Step-by-step explanation:

If we have a quotient function y, in the following format

[tex]y = \frac{f(x)}{g(x)}[/tex]

This function has the following derivative

[tex]y' = \frac{f'(x)*g(x) - g'(x)*f(x)}{(g(x))^{2}}[/tex]

In this problem, we have that:

[tex]f(x) = x, g(x) = e^{2x}[/tex]

So

[tex]f'(x) = 1, g'(x) = 2e^{2x}[/tex]

The derivative of the function is:

[tex]y' = \frac{f'(x)*g(x) - g'(x)*f(x)}{(g(x))^{2}}[/tex]

[tex]y' = \frac{e^{2x} - 2xe^{2x}}{(e^{2x})^{2}}[/tex]

[tex]y' = \frac{e^{2x}(1 - 2x)}{e^{4x}}[/tex]

[tex]y' = \frac{1 - 2x}{e^{4x}}[/tex]