Respuesta :
Answer:
[tex]\int^2_1 ln 5x dx=1.99[/tex]
Step-by-step explanation:
we have the integral:
[tex]\int^2_1 ln 5x dx[/tex]
The formula to integrate by parts is:
[tex]\int udv=uv-\int vdu[/tex]
in this case we will use [tex]u=ln5x[/tex] and [tex]dv=dx[/tex].
so [tex]v=x[/tex]
and using logarithm derivation [tex]d(lnw)=\frac{dw}{w}[/tex]
[tex]du=\frac{5}{5x} =\frac{1}{x}[/tex]
thus:
[tex]\int ln 5x dx=(ln5x)(x)- \int x(\frac{1}{x})dx[/tex]
[tex]\int ln 5x dx=xln5x - \int dx[/tex]
[tex]\int ln 5x dx=xln5x - x[/tex]
evaluating the limits:
[tex]\int^2_1 ln 5x dx=[xln5x - x]^2_1\\=[2ln(5*2)- 2]-[1ln(5*1) - 1]\\=[2ln10-2]-[ln5-1]\\=[2(2.3)-2]-[1.61-1]\\=[4.6-2]-0.61\\=2.6-0.61\\=1.99[/tex]
Answer:
[tex]\displaystyle \int\limits^2_1 {\ln 5x} \, dx = \ln(20) - 1[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Integration
- Integrals
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration by Parts: [tex]\displaystyle \int {u} \, dv = uv - \int {v} \, du[/tex]
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int\limits^2_1 {\ln 5x} \, dx[/tex]
Step 2: Integrate Pt. 1
Identify variables for integration by parts using LIPET.
- Set u: [tex]\displaystyle u = \ln 5x[/tex]
- [u] Logarithmic Differentiation [Derivative Rule - Chain Rule]: [tex]\displaystyle du = \frac{(5x)'}{5x} \ dx[/tex]
- [du] Basic Power Rule [Derivative Rule - Multiplied Constant]: [tex]\displaystyle du = \frac{5}{5x} \ dx[/tex]
- [du] Simplify: [tex]\displaystyle du = \frac{1}{x} \ dx[/tex]
- Set dv: [tex]\displaystyle dv = dx[/tex]
- [dv] Integration Rule [Reverse Power Rule]: [tex]\displaystyle v = x[/tex]
Step 3: Integrate Pt. 2
- [Integral] Integration by Parts: [tex]\displaystyle \int\limits^2_1 {\ln 5x} \, dx = x \ln(5x) \bigg| \limits^2_1 - \int\limits^2_1 {} \, dx[/tex]
- [Integral] Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int\limits^2_1 {\ln 5x} \, dx = x \ln(5x) \bigg| \limits^2_1 - x \bigg| \limits^2_1[/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^2_1 {\ln 5x} \, dx = \ln(20) - 1[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration