Respuesta :
Answer:
[tex]xe^{x} - e^{x} +C[/tex]
Step-by-step explanation:
using the formular for integration by parts;
∫udv = uv -∫vdu ..............equ 1
in the equation below;
∫[tex]xe^{x}[/tex]
u=x , dv =[tex]e^{x}[/tex]
du= 1 v= [tex]e^{x}[/tex]
Substitute into equ 1
∫udv = [tex]xe^{x}[/tex] - ∫[tex]e^{x}dx[/tex]
∫udv = [tex]xe^{x}[/tex] - [tex]e^{x} + C[/tex]
Answer:
[tex]\displaystyle \int {xe^x} \, dx = e^x(x - 1) + C[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- [Indefinite Integral] Integration Constant C
Integration by Parts: [tex]\displaystyle \int {u} \, dv = uv - \int {v} \, du[/tex]
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int {xe^x} \, dx[/tex]
Step 2: Integrate Pt. 1
Identify variables for integration by parts using LIPET.
- Set u: [tex]\displaystyle u = x[/tex]
- [u] Differentiate [Basic Power Rule]: [tex]\displaystyle du = dx[/tex]
- Set dv: [tex]\displaystyle dv = e^x[/tex]
- [dv] Integrate [Exponential Integration]: [tex]\displaystyle v = e^x[/tex]
Step 3: Integrate Pt. 2
- [Integral] Integration by Parts: [tex]\displaystyle \int {xe^x} \, dx = xe^x - \int {e^x} \, dx[/tex]
- [Integral] Exponential Integration: [tex]\displaystyle \int {xe^x} \, dx = xe^x - e^x + C[/tex]
- Factor: [tex]\displaystyle \int {xe^x} \, dx = e^x(x - 1) + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration