Applying properties of Exponents In Exercise, use the properties of exponents to simplify the expression.
(a) (45)(42)
(b) (72)3
(c) 2- 4
(d) 3^8/3^4

Respuesta :

Answer:

(a) [tex]4^7[/tex]

(b) [tex]7^6[/tex]

(c) [tex]\dfrac{1}{16}[/tex]

(d) [tex]3^{4}[/tex]

Step-by-step explanation:

We need to simplify the given expressions.

(a)

Consider the given expression is

[tex](4^5)(4^2)[/tex]

Using the property of exponent, we get

[tex]=4^{5+2}[/tex]            [tex][\because a^ma^n=a^{m+n}][/tex]

[tex]=4^7[/tex]

(b)

Consider the given expression is

[tex](7^2)^3[/tex]

Using the property of exponent, we get

[tex]=7^{2\times 3}[/tex]            [tex][\because (a^m)^n=a^{mn}][/tex]

[tex]=7^6[/tex]

(c)

Consider the given expression is

[tex]2^{-4}[/tex]

Using the property of exponent, we get

[tex]=\dfrac{1}{2^{4}}[/tex]            [tex][\because a^{-n}=\dfrac{1}{a^n}][/tex]

[tex]=\dfrac{1}{16}[/tex]

(d)

Consider the given expression is

[tex]\dfrac{3^8}{3^4}[/tex]

Using the property of exponent, we get

[tex]=3^{8-4}[/tex]            [tex][\because \dfrac{a^m}{a^n}=a^{m-n}][/tex]

[tex]=3^{4}[/tex]