Answer:
[tex]{x}= \pm \: i\: or \: x = 0 \: or \: {x}= \pm \sqrt{2}i \: or \: {x}= \pm8[/tex]
Step-by-step explanation:
The given polynomial is
[tex]( {x}^{2} + 1)( {x}^{3} + 2x)( {x}^{2} - 64) = 0[/tex]
By the zero product principle,
[tex] {x}^{2} + 1 = 0 \: or \: {x}^{3} + 2x = 0 \: or \: {x}^{2} - 64 = 0[/tex]
Or
[tex]{x}^{2} + 1 = 0 \: or \: x( {x}^{2} + 2)= 0 \: or \: {x}^{2} - 64 = 0[/tex]
This implies that;
[tex]{x}^{2}= - 1 \: or \: x = 0 \: or \: ( {x}^{2} + 2)= 0 \: or \: {x}^{2} = 64 [/tex]
[tex]{x}= \pm \sqrt{ - 1} \: or \: x = 0 \: or \: {x} = \pm \sqrt{ - 2} \: or \: {x}= \pm \sqrt{64} [/tex]
Hence the roots are:
[tex]{x}= \pm \: i\: or \: x = 0 \: or \: {x}= \pm \sqrt{2}i \: or \: {x}= \pm8[/tex]