Respuesta :

Answer:

[tex] \int x(8-x)^{3/2}dx= -\frac{16}{5} (8-x)^{\frac{5}{2}} +\frac{2}{7} (8-x)^{\frac{7}{2}} +C[/tex]

Step-by-step explanation:

For this case we need to find the following integral:

[tex] \int x(8-x)^{3/2}dx[/tex]

And for this case we can use the substitution [tex] u = 8-x [/tex] from here we see that [tex] du = -dx[/tex], and if we solve for x we got [tex] x = 8-u[/tex], so then we can rewrite the integral like this:

[tex] \int x(8-x)^{3/2}dx= \int (8-u) u^{3/2} (-du)[/tex]

And if we distribute the exponents we have this:

[tex] \int x(8-x)^{3/2}dx= - \int 8 u^{3/2} + \int u^{5/2} du[/tex]

Now we can do the integrals one by one:

[tex] \int x(8-x)^{3/2}dx= -8 \frac{u^{5/2}}{\frac{5}{2}} + \frac{u^{7/2}}{\frac{7}{2}} +C[/tex]

And reordering the terms we have"

[tex] \int x(8-x)^{3/2}dx= -\frac{16}{5} u^{\frac{5}{2}} +\frac{2}{7} u^{\frac{7}{2}} +C[/tex]

And rewriting in terms of x we got:

[tex] \int x(8-x)^{3/2}dx= -\frac{16}{5} (8-x)^{\frac{5}{2}} +\frac{2}{7} (8-x)^{\frac{7}{2}} +C[/tex]

And that would be our final answer.