Respuesta :
Answer:
True
Step-by-step explanation:
The integral
[tex]\int\limits^1_0 {xe^{10x}} \, dx[/tex]
in the integral we have a product of a monomial: [tex]x[/tex]
and an exponential function: [tex]e^{10x}[/tex]
In general case, when we have a combination of these two things you can use the integration by parts, where [tex]x[/tex] will be [tex]u[/tex] and [tex]e^{10x}[/tex] will be [tex]dv[/tex].
The statement is true
Answer:
True
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
U-Substitution
Integration by Parts: [tex]\displaystyle \int {u} \, dv = uv - \int {v} \, du[/tex]
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int\limits^1_0 {xe^{10x}} \, dx[/tex]
Step 2: Integrate Pt. 1
Identify variables for integration by parts using LIPET.
- Set u: [tex]\displaystyle u = x[/tex]
- [u] Basic Power Rule: [tex]\displaystyle du = dx[/tex]
- Set dv: [tex]\displaystyle dv = e^{10x} \ dx[/tex]
- [dv] Exponential Integration [U-Substitution]: [tex]\displaystyle v = \frac{e^{10x}}{10}[/tex]
Step 3: integrate Pt. 2
- [Integral] Integration by Parts: [tex]\displaystyle \int\limits^1_0 {xe^{10x}} \, dx = \frac{xe^{10x}}{10} \bigg| \limits^1_0 - \int\limits^1_0 {\frac{e^{10x}}{10}} \, dx[/tex]
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int\limits^1_0 {xe^{10x}} \, dx = \frac{xe^{10x}}{10} \bigg| \limits^1_0 - \frac{1}{10} \int\limits^1_0 {e^{10x}} \, dx[/tex]
- [Integral] Exponential Integration: [tex]\displaystyle \int\limits^1_0 {xe^{10x}} \, dx = \frac{xe^{10x}}{10} \bigg| \limits^1_0 - \frac{1}{10} \bigg( \frac{e^{10x}}{10} \bigg) \bigg| \limits^1_0[/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^1_0 {xe^{10x}} \, dx = \frac{9e^{10}}{100} + \frac{1}{10}[/tex]
- Simplify: [tex]\displaystyle \int\limits^1_0 {xe^{10x}} \, dx = \frac{9e^{10} + 1}{100}[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration