Answer:
[tex](sec x)+(cos x)=(tan x)*(sin x)\\identities\\(sec x)= 1/cos x\\(tan x)=sin x/cos x\\\\and\\(cos x)^{2}+(sin x)^{2}=1\\(cos x)^{2}=1-(sin x)^{2}\\\\(1/cos x )+(cos x) = (sin x)*(sin x)/(cos x)\\ [(1/cos x)+(cos x)]*(cos x)=(sin x)^{2}\\\\1+(cos x)^{2}=(sin x)^{2}\\1+1-(sin x)^{2}=(sin x)^{2}\\2=2*(sin x)^{2}\\2/2=(sin x)^{2}\\1=(sin x)^{2}\\\\This is not true ,so\\(sec x)+(cos x)\neq (tan x)*(sin x)[/tex]