[tex]\bf \stackrel{\textit{ball's height}~\hfill }{\stackrel{\downarrow }{h}=1+15t-5t^2}\implies \stackrel{\textit{ball's height}~\hfill }{\stackrel{\downarrow }{6}=1+15t-5t^2}\implies 0=-5+15t-5t^2 \\\\\\ ~~~~~~~~~~~~\textit{using the quadratic formula} \\\\ \stackrel{\stackrel{a}{\downarrow }}{5}t^2\stackrel{\stackrel{b}{\downarrow }}{-15}t\stackrel{\stackrel{c}{\downarrow }}{+5}=0 \qquad \qquad t= \cfrac{ - b \pm \sqrt { b^2 -4 a c}}{2 a}[/tex]
[tex]\bf t=\cfrac{-(-15)\pm\sqrt{(-15)^2-4(5)(5)}}{2(5)}\implies t=\cfrac{15\pm\sqrt{225-100}}{10} \\\\\\ t=\cfrac{15\pm\sqrt{125}}{10}\implies t=\cfrac{15\pm\sqrt{5^2 \cdot 5}}{10}\implies t=\cfrac{\stackrel{3}{~~\begin{matrix} 15 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}\pm ~~\begin{matrix} 5 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~\sqrt{5}}{\underset{2}{~~\begin{matrix} 10 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}[/tex]
[tex]\bf t=\cfrac{3\pm \sqrt{5}}{2}\implies t= \begin{cases} \frac{3+ \sqrt{5}}{2} \approx 2.618\\\\ \frac{3- \sqrt{5}}{2}\approx 0.382 \end{cases}[/tex]