Calculate the solubilities of the following compounds in a 0.02 M solution of barium nitrate using molar concentrations, first ignoring ionic strength and activities.
a. silver iodate
b. barium sulfate
c. Repeat the above calculations using ionic strength and activities.

Respuesta :

znk

Answer:

a. 1.7 × 10⁻⁴ mol·L⁻¹; b. 5.5 × 10⁻⁹ mol·L⁻¹

c. 2.3 × 10⁻⁴ mol·L⁻¹;    5.5 × 10⁻⁸ mol·L⁻¹

Explanation:

a. Silver iodate

Let s = the molar solubility.  

                     AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq); Ksp = 3.0 × 10⁻⁸

E/mol·L⁻¹:                               s               s

[tex]K_{sp} =\text{[Ag$^{+}$][IO$_{3}$^{-}$]} = s\times s =  s^{2} = 3.0\times 10^{-8}\\s = \sqrt{3.0\times 10^{-8}} \text{ mol/L} = 1.7 \times 10^{-4} \text{ mol/L}[/tex]

b. Barium sulfate

                     BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq); Ksp = 1.1 × 10⁻¹⁰

I/mol·L⁻¹:                                0.02             0

C/mol·L⁻¹:                                 +s              +s

E/mol·L⁻¹:                            0.02 + s          s

[tex]K_{sp} =\text{[Ba$^{2+}$][SO$_{4}$^{2-}$]} = (0.02 + s) \times s \approx  0.02s = 1.1\times 10^{-10}\\s = \dfrac{1.1\times 10^{-10}}{0.02} \text{ mol/L} = 5.5 \times 10^{-9} \text{ mol/L}[/tex]

c. Using ionic strength and activities

(i) Calculate the ionic strength of 0.02 mol·L⁻¹ Ba(NO₃)₂

The formula for ionic strength is  

[tex]\mu = \dfrac{1}{2} \sum_{i} {c_{i}z_{i}^{2}}\\\\\mu = \dfrac{1}{2} (\text{[Ba$^{2+}$]}\cdot (2+)^{2} + \text{[NO$_{3}$^{-}$]}\times(-1)^{2}) = \dfrac{1}{2} (\text{0.02}\times 4 + \text{0.04}\times1)= \dfrac{1}{2} (0.08 + 0.04)\\\\= \dfrac{1}{2} \times0.12 = 0.06[/tex]

(ii) Silver iodate

a. Calculate the activity coefficients of the ions

[tex]\log \gamma = -0.51z^{2}\sqrt{I} = -0.051(1)^{2}\sqrt{0.06} = -0.51\times 0.24 = -0.12\\\gamma = 10^{-0.12} = 0.75[/tex]

b. Calculate the solubility

AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq)

[tex]K_{sp} =\text{[Ag$^{+}$]$\gamma_{Ag^{+}}$[IO$_{3}$^{-}$]$\gamma_{IO_{3}^{-}}$} = s\times0.75\times s \times 0.75 =0.56s^{2}= 3.0 \times 10^{-8}\\s^{2} = \dfrac{3.0 \times 10^{-8}}{0.56} = 5.3 \times 10^{-8}\\\\s =2.3 \times 10^{-4}\text{ mol/L}[/tex]

(iii) Barium sulfate

a. Calculate the activity coefficients of the ions

[tex]\log \gamma = -0.51z^{2}\sqrt{I} = -0.051(2)^{2}\sqrt{0.06} = -0.51\times16\times 0.24 = -0.50\\\gamma = 10^{-0.50} = 0.32[/tex]

b. Calculate the solubility

BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq

[tex]K_{sp} =\text{[Ba$^{2+}$]$\gamma_{ Ba^{2+}}$[SO$_{4}$^{2-}$]$\gamma_{ SO_{4}^{2-}}$} = (0.02 + s) \times 0.32\times s\times 0.32 \approx  0.02\times0.10s\\2.0\times 10^{-3}s = 1.1 \times 10^{-10}\\s = \dfrac{1.1\times 10^{-10}}{2.0 \times 10^{-3}} \text{ mol/L} = 5.5 \times 10^{-8} \text{ mol/L}[/tex]