Answer:
See description
Explanation:
With the given information we have:
[tex]x(t) = 1 + cos(t)\\ y(t)=sin(t)\\ \rho(x,y) = 3x[/tex]
the interval is [tex][0,\pi ][/tex]
now the mass [tex]m[/tex] has the given expression:
[tex]m = \int \rho(x,y) dS[/tex]
we will use the formula for a line integral and let:
[tex]dS=\sqrt{x'(t)^2 + y'(t)^2}=\sqrt{cos(t)^2 + sin(t)^2}dt=dt[/tex]
therefore we have:
[tex]m=\int \rho(x,y)dS=\int\limits^\pi_0 {3*x}dS=\int\limits^\pi _0{3*(1+cos(t))dS\\=\int\limits^\pi _0{3*(1+cos(t))dt[/tex]
we solve the integral:
[tex]m=3*\int\limits^\pi _0{(1+cos(t))dt= 3*(t+sin(t))\limits^\pi _0=3*\pi=9.42[/tex]