contestada

A specimen of aluminum having a rectangular cross section 9.6 mm × 12.9 mm (0.3780 in. × 0.5079 in.) is pulled in tension with 35600 N (8003 lbf) force, producing only elastic deformation. The elastic modulus for aluminum is 69 GPa (or 10 × 106 psi). Calculate the resulting strain.

Respuesta :

Answer:

[tex]\epsilon=4.16\times 10^{-3}\[/tex]

Explanation:

It is given that,

Dimension of specimen of aluminium, 9.6 mm × 12.9 mm

Area of cross section of aluminium specimen, [tex]A=9.6\times 12.9=123.84\times 10^{-6}\ mm^2[/tex]

[tex]A=123.84\times 10^{-6}\ m^2[/tex]

Tension acting on object, T = 35600 N

The elastic modulus for aluminum is, [tex]E=69\ GPa=69\times 10^9\ Pa[/tex]

The stress acting on material is proportional to the strain. Its formula is given by :

[tex]\epsilon=\dfrac{\sigma}{E}[/tex]

[tex]\sigma[/tex] is the stress

[tex]\epsilon=\dfrac{F}{EA}[/tex]

[tex]\epsilon=\dfrac{35600}{69\times 10^9\times 123.84\times 10^{-6}}[/tex]

[tex]\epsilon=4.16\times 10^{-3}[/tex]

Hence, this is the required solution.