Among all right circular cones with a slant height of 27​, what are the dimensions​ (radius and​ height) that maximize the volume of the​ cone? The slant height of a cone is the distance from the outer edge of the base to the vertex.

Respuesta :

Answer:

Radius = 22.04 unit,

Height = 15.58 unit

Step-by-step explanation:

Since, the volume of cone,

[tex]V=\frac{1}{3}\pi x^2 h[/tex]

Where,

x = radius,

h = height,

Since, the slant height of a cone is,

[tex]l=\sqrt{x^2 + h^2}[/tex]

[tex]l^2 = x^2 + h^2[/tex]

[tex]\implies h=\sqrt{l^2 - x^2}[/tex]

Here, l = 27.

[tex]\implies h = \sqrt{27^2 - x^2}=\sqrt{729 - x^2}----(1)[/tex]

So, the volume would be,

[tex]V=\frac{1}{3}\pi x^2 (\sqrt{729 - x^2})[/tex]

Differentiating with respect to x,

[tex]\frac{dV}{dt}=\frac{1}{3}\pi (x^2 \times \frac{1}{2\sqrt{729 - x^2}}\times -2x + \sqrt{729 - x^2}\times 2x)[/tex]

[tex]=\frac{1}{3}\pi (\frac{-x^3+2x(729-x^2)}{\sqrt{729 - x^2}}[/tex]

[tex]=\frac{1}{3}\pi (\frac{-x^3+1458x-2x^3}{\sqrt{729 - x^2}})[/tex]

[tex]=\frac{1}{3}\pi (\frac{-3x^3+1458x}{\sqrt{729 - x^2}})[/tex]

[tex]=\pi (\frac{-x^3+486x}{\sqrt{729 - x^2}})[/tex]

For maxima or minima,

[tex]\frac{dV}{dt}=0[/tex]

[tex]\implies -x^3 + 486x = 0[/tex]

[tex]x^3 = 486x[/tex]

[tex]x^2 = 486[/tex]

[tex]\implies x=\pm \sqrt{486}=\pm 22.04[/tex]

But side can not be negative,

So, x = 22.04,

Since,

[tex]\frac{dV}{dx}|_{x=20}=297.91\text{Positive}[/tex]

While,

[tex]\frac{dV}{dx}|_{x=23}=-219.70\text{Negative}[/tex]

Thus, by the first derivative test,

V(x) is maximum at x = 22.04,

Also, from equation (1),

h = 15.58

Hence, for maximising the volume, the radius and height of the cone would be 22.04 unit and 15.58 unit respectively.