1.50 g of a weak acid (molar mass 176) is dissolved in 50.0 mL of water, and the resultant solution is titrated with 0.300 M NaOH. When 12.5 mL of 0.300 M NaOH is added, the pH of the resultant solution is 4.00. Calculate Ka for this acid.

Respuesta :

Answer:

The dissociation constant of this acid is [tex]7.85\times 10^{-5}[/tex].

Explanation:

Moles of acid = [tex]\frac{1.50 g}{176 g/mol}=0.008523 mol[/tex]

Moles of sodium hydroxide:

[tex]Moles=Concentration\times volume (L)[/tex]

Moles of sodium hydroxide:

[tex]=0.300 M\times 0.0125 L=0.00375 mol[/tex]

To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:

[tex]pH=pK_a+\log(\frac{[salt]}{[acid]})[/tex]

 [tex]HA+NaOH\rightarrow NaA+H_2O[/tex]

Initial:        0.008523    0.00375                0

Final:       (0.008523-0.00375)   0              0.00375

Volume of solution = 50.0 mL + 12.5 mL = 62.5 mL = 0.0625 L    (Conversion factor:  1 L = 1000 mL)

To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:

[tex]pH=pK_a+\log(\frac{[salt]}{[acid]})[/tex]

[tex]pH=pK_a+\log(\frac{[NaA]}{[HA]})[/tex]

We are given:

[tex]pK_a[/tex] = ?

[tex][HA]=\frac{0.008523 mol-0.00375}{0.0625 L}=\frac{0.004773 mol}{0.0625 L}[/tex]

[tex][NaA]=\frac{0.00375 mol}{0.0625 L}[/tex]

pH = 4.00

Putting values in above equation, we get:

[tex]4.00=pK_a+\log (\frac{\frac{0.00375 mol}{0.0625 L}}{\frac{0.004773 mol}{0.0625 L}})\\\\pK_a=4.105[/tex]

[tex]4.105=-\log[K_a][/tex]

[tex]K_a=7.85\times 10^{-5}[/tex]

The dissociation constant of this acid is [tex]7.85\times 10^{-5}[/tex].