Answer:
[tex]F_i=4.6875x10^5 N[/tex]
Explanation:
Given:
[tex]m=1x10^7 kg[/tex]
[tex]u=0.750 m/s[/tex]
[tex]s=6m[/tex]
First determinate the time using equation of Newton's law
[tex]d=\frac{uf+ui}{2}*t[/tex]
uf=0 solve to t'
[tex]t=\frac{2*d}{u_i}=\frac{2*6m}{0.75m/s}[/tex]
[tex]t=16s[/tex]
The impulse concept tells about the force in terms of velocity so:
[tex]F=m*a[/tex]
[tex]a=\frac{u'}{t'}[/tex]
[tex]F_i=m*\frac{u}{t}=1x10^7kg\frac{0.750m/s}{16s}[/tex]
[tex]F_i=4.6875x10^5 N[/tex]