Explanation:
Let the mass of the rod be [tex]m_{r}[/tex]
Let the length of the rod be [tex]l[/tex]
Let the mass of the puck be [tex]m_{p}[/tex]
Let moment of inertia of the rod about pivot be [tex]I_{r}[/tex]
Let moment of inertia of the puck about one end be [tex]I_{p}[/tex]
Let [tex]v[/tex] be the velocity of the puck before impact.
Let ω be the angular velocity of the rod+puck system about pivot after collision.
Let [tex]T[/tex] be the time period of the rod+puck system about pivot after collision.
Given,
[tex]l_{r}=2m\\m_{r}=1.3Kg\\m_{p}=0.163Kg\\T=0.736s[/tex]
ω=[tex]\frac{2\pi}{T}[/tex]=[tex]\frac{2\pi}{0.736}[/tex]=[tex]8.53s^{-1}[/tex]
[tex]I_{p}=ml_{r}^{2}=0.163\times 4=0.652[/tex]
[tex]I_{r}=\frac{1}{3}m_{r}l_{r}^{2}=\frac{1}{3}\times 1.3\times 4=1.73[/tex]
Let us conserve the angular momentum of the rod and puck system before and after the impact.
The puck sticks to the rod end.
So,
[tex]m_{p}vl_{r}=(I_{r}+I_{p})w[/tex]
[tex]0.163\times 2\times v=(0.652+1.73)\times 8.53^{2}\\v=531.64ms^{-1}[/tex]