Answer:
[tex]v_W=9.23m/s[/tex]
Explanation:
The force of friction change is the pavement is dry or wet so to determine the force of friction:
[tex]F=m*a[/tex]
[tex]F_k=m*a_c[/tex]
[tex]F_k=u_K*N[/tex]
[tex]N=m*g[/tex]
[tex]F_k=u_K*m*g=m*a_c[/tex]
[tex]u_K*g=a_c[/tex]
[tex]a_c=\frac{V^2}{R}[/tex]
Dry pavement
[tex]u_{KD}*g=\frac{v_D^2}{R}[/tex]
Wet pavement
[tex]u_{KW}*g=\frac{v_W^2}{R}[/tex]
[tex]u_{KW}=\frac{1}{3}*u_{KD}[/tex]
Solve and reduce the factor so:
[tex]\frac{v_W^2}{v_D^2}=\frac{\frac{1}{3}*u_{KD}}{u_{KD}}[/tex]
[tex]v_W^2=v_D^2*\frac{1}{3}[/tex]
[tex]v_W=v_D*\frac{1}{\sqrt{3}}=16m/s*\frac{1}{\sqrt{3}}[/tex]
[tex]v_W=9.23m/s[/tex]