Answer:
Given below
Step-by-step explanation:
Given that population mean = 1500 and population std dev σ = 3.0.
Since sigma is known, we can use z critical values for finding out confidence intervals
a) 95% CI for μ when N = 25 and sample mean = 58.3
=[tex](58.3-1.96(\frac{3}{\sqrt{25} } ,58.3+1.96(\frac{3}{\sqrt{25} })\\= (58.3-1.176, 58.3+1.176)\\= (57.124, 59.476)[/tex]
b) a 95% CI for μ when N = 100 and sample mean = 58.3.
=[tex](58.3-1.96(\frac{3}{\sqrt{100} } ,58.3+1.96(\frac{3}{\sqrt{100} })\\= (58.3-0.588, 58.3+0.588)\\= (56.712, 58.588)\\[/tex]
c) a 99% CI for μ when N = 100 and sample mean = 58.3.
=[tex](58.3-2.58(\frac{3}{\sqrt{100} } ,58.3+2.58(\frac{3}{\sqrt{100} })\\= (58.3-0.774, 58.3+0.774)\\= (57.526, 59.074)[/tex]
d) a 82% CI for μ when N = 100 and sample mean = 58.3.
=[tex](58.3-1.33(\frac{3}{\sqrt{100} } ,58.3+1.33(\frac{3}{\sqrt{100} })\\= (58.3-0.399 58.3+0.399)\\= (57.9.1, 58.699)[/tex]
e) [tex]1=2.58(\frac{3}{\sqrt{n} } )\\\sqrt{n} =7.74\\n=59.9176[/tex]
n =60