contestada

A helical compression spring made of hard-drawn 2mm spring steel wire has an OD of 22mm and 8.5 total coils with plain/ground ends. For the spring to be solid-safe, what are the spring rate k, solid force Fs, and free length L0? Does the spring need to be supported against buckling?

Respuesta :

Answer:

k = 2463 N/m

Fs = 81.12 N

Lo = 47.7 mm

Explanation:

given data:

d =2 mm

OD = 22 mm

N_2 = 8.5

from data book

A = 1783 MPa

n = 0.19

[tex]S_[ut] = \frac{1783}{2^{0.19}} = 1563 MPa[/tex]

[tex]S_{sy] = 0.45 S_{ut}  = 70.3.4 MPa[/tex]

D = OD - d = 20 mm

c = 2D/2 = 10

[tex]K_b =\frac{4c +2}{4c  -3} = \frac{4(10) +2}{4(10) + 3} = 1.135[/tex]

Na = 8.5 -1  = 7/5 turns

[tex]Ls = 2\times 6.5 = 17 mm[/tex]

for solid safe  use ns = 1.2

spring rate [tex]k = \frac{Gd^4}{8D^3 Na} = \frac{79.3\times 10^9 (2^4 \times 10^{-12}}{8\times (20^3 \times 10^{-9} \times (7.5)}[/tex]

k = 2463 N/m

solid force

[tex]Fs = \frac{\pi d^3 (S_{sy}/ns) }{8 Kb D}[/tex]

[tex]Fs =\frac{\pi (2^3 \times 10^{-19} (703.4\times 10^6)/1.2}{8\times 1.135\times 20\times 10^{-3}}[/tex]

Fs = 81.12 N

Free length

[tex]Lo = y + Ls = \frac{Fs}{k} + Ls = \frac{81.12}{2463\times 10^{-3}}  + 17 = 47.7 mm[/tex]

[tex]Lo_{et} = \frac{2.63 D}{\alpha} = \frac{2.63\times 20}{0.5} = 105.2[/tex]

[tex]\frac{LO_{et}}{Lo} = \frac{105.2}{47.7} = 2.2[/tex]

As Lo is less than 105.2 the spring wiill not be buckle